1 /* 2 Copyright (c) 2013-2014 Timur Gafarov 3 4 Boost Software License - Version 1.0 - August 17th, 2003 5 6 Permission is hereby granted, free of charge, to any person or organization 7 obtaining a copy of the software and accompanying documentation covered by 8 this license (the "Software") to use, reproduce, display, distribute, 9 execute, and transmit the Software, and to prepare derivative works of the 10 Software, and to permit third-parties to whom the Software is furnished to 11 do so, all subject to the following: 12 13 The copyright notices in the Software and this entire statement, including 14 the above license grant, this restriction and the following disclaimer, 15 must be included in all copies of the Software, in whole or in part, and 16 all derivative works of the Software, unless such copies or derivative 17 works are solely in the form of machine-executable object code generated by 18 a source language processor. 19 20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT 23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE 24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, 25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 DEALINGS IN THE SOFTWARE. 27 */ 28 29 module dmech.solver; 30 31 import std.math; 32 import std.algorithm; 33 34 import dlib.math.vector; 35 import dlib.math.utils; 36 37 import dmech.rigidbody; 38 import dmech.contact; 39 40 void prepareContact(Contact* c) 41 { 42 RigidBody body1 = c.body1; 43 RigidBody body2 = c.body2; 44 45 Vector3f r1 = c.body1RelPoint; 46 Vector3f r2 = c.body2RelPoint; 47 48 Vector3f relativeVelocity = Vector3f(0.0f, 0.0f, 0.0f); 49 relativeVelocity += body1.linearVelocity + cross(body1.angularVelocity, r1); 50 relativeVelocity -= body2.linearVelocity + cross(body2.angularVelocity, r2); 51 c.initialVelocityProjection = dot(relativeVelocity, c.normal); 52 53 c.n1 = c.normal; 54 c.w1 = c.normal.cross(r1); 55 c.n2 = -c.normal; 56 c.w2 = -c.normal.cross(r2); 57 58 c.effectiveMass = 59 body1.invMass + 60 body2.invMass + 61 dot(c.w1 * body1.invInertiaTensor, c.w1) + 62 dot(c.w2 * body2.invInertiaTensor, c.w2); 63 } 64 65 void solveContact(Contact* c, double dt) 66 { 67 RigidBody body1 = c.body1; 68 RigidBody body2 = c.body2; 69 70 Vector3f r1 = c.body1RelPoint; 71 Vector3f r2 = c.body2RelPoint; 72 73 Vector3f relativeVelocity = Vector3f(0.0f, 0.0f, 0.0f); 74 relativeVelocity += body1.linearVelocity + cross(body1.angularVelocity, r1); 75 relativeVelocity -= body2.linearVelocity + cross(body2.angularVelocity, r2); 76 float velocityProjection = dot(relativeVelocity, c.normal); 77 78 // Check if the bodies are already moving apart 79 if (velocityProjection > 0.0f) 80 return; 81 82 float bounce = (body1.bounce + body2.bounce) * 0.5f; 83 float damping = 0.9f; 84 float C = max(0, -bounce * c.initialVelocityProjection - damping); 85 86 float bias = 0.0f; 87 88 // Velocity-based position correction 89 /* 90 float allowedPenetration = 0.01f; 91 float biasFactor = 0.3f; // 0.1 to 0.3 92 bias = biasFactor * (1.0f / dt) * max(0.0f, c.penetration - allowedPenetration); 93 */ 94 float a = velocityProjection; 95 float b = c.effectiveMass; 96 97 float normalImpulse = (C - a + bias) / b; 98 99 //if (normalImpulse < 0.0f) 100 // normalImpulse = 0.0f; 101 102 // Friction 103 float mu = (body1.friction + body2.friction) * 0.5f; 104 Vector3f fVec = Vector3f(0.0f, 0.0f, 0.0f); 105 106 Vector3f tn1 = c.fdir1; 107 Vector3f tw1 = c.fdir1.cross(r1); 108 Vector3f tn2 = -c.fdir1; 109 Vector3f tw2 = -c.fdir1.cross(r2); 110 float ta = dot(relativeVelocity, c.fdir1); 111 float tb = dot(tn1, tn1 * body1.invMass) 112 + dot(tw1, tw1 * body1.invInertiaTensor) 113 + dot(tn2, tn2 * body2.invMass) 114 + dot(tw2, tw2 * body2.invInertiaTensor); 115 float fImpulse1 = -ta / tb; 116 fImpulse1 = clamp(fImpulse1, -normalImpulse * mu, normalImpulse * mu); 117 118 tn1 = c.fdir2; 119 tw1 = c.fdir2.cross(r1); 120 tn2 = -c.fdir2; 121 tw2 = -c.fdir2.cross(r2); 122 ta = dot(relativeVelocity, c.fdir2); 123 tb = dot(tn1, tn1 * body1.invMass) 124 + dot(tw1, tw1 * body1.invInertiaTensor) 125 + dot(tn2, tn2 * body2.invMass) 126 + dot(tw2, tw2 * body2.invInertiaTensor); 127 float fImpulse2 = -ta / tb; 128 fImpulse2 = clamp(fImpulse2, -normalImpulse * mu, normalImpulse * mu); 129 130 c.accumulatedfImpulse1 += fImpulse1; 131 c.accumulatedfImpulse2 += fImpulse2; 132 133 fVec = c.fdir1 * fImpulse1 + c.fdir2 * fImpulse2; 134 135 Vector3f impulseVec = c.normal * normalImpulse; 136 137 impulseVec += fVec; 138 139 body1.applyImpulse(+impulseVec, c.point); 140 body2.applyImpulse(-impulseVec, c.point); 141 } 142 143 void solvePositionError(Contact* c, uint numContacts) 144 { 145 RigidBody body1 = c.body1; 146 RigidBody body2 = c.body2; 147 148 Vector3f r1 = c.body1RelPoint; 149 Vector3f r2 = c.body2RelPoint; 150 151 Vector3f prv = Vector3f(0.0f, 0.0f, 0.0f); 152 prv += body1.pseudoLinearVelocity + cross(body1.pseudoAngularVelocity, r1); 153 prv -= body2.pseudoLinearVelocity + cross(body2.pseudoAngularVelocity, r2); 154 float pvp = dot(prv, c.normal); 155 156 if (c.penetration <= 0.0f) 157 return; 158 159 float ERP = (1.0f / numContacts) * 0.99f; 160 float pc = c.penetration * ERP; 161 c.penetration -= pc; 162 163 if (pvp >= pc) 164 return; 165 166 float a = pvp; 167 float impulse = (pc - a) / c.effectiveMass; 168 169 Vector3f impulseVec = c.normal * impulse; 170 171 body1.applyPseudoImpulse(+impulseVec, c.point); 172 body2.applyPseudoImpulse(-impulseVec, c.point); 173 } 174