1 /*
2 Copyright (c) 2013-2014 Timur Gafarov 
3 
4 Boost Software License - Version 1.0 - August 17th, 2003
5 
6 Permission is hereby granted, free of charge, to any person or organization
7 obtaining a copy of the software and accompanying documentation covered by
8 this license (the "Software") to use, reproduce, display, distribute,
9 execute, and transmit the Software, and to prepare derivative works of the
10 Software, and to permit third-parties to whom the Software is furnished to
11 do so, all subject to the following:
12 
13 The copyright notices in the Software and this entire statement, including
14 the above license grant, this restriction and the following disclaimer,
15 must be included in all copies of the Software, in whole or in part, and
16 all derivative works of the Software, unless such copies or derivative
17 works are solely in the form of machine-executable object code generated by
18 a source language processor.
19 
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
23 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
24 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
25 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 DEALINGS IN THE SOFTWARE.
27 */
28 
29 module dmech.geometry;
30 
31 import std.math;
32 
33 import dlib.math.vector;
34 import dlib.math.matrix;
35 import dlib.math.affine;
36 import dlib.math.utils;
37 import dlib.geometry.aabb;
38 
39 enum GeomType
40 {
41     Undefined,
42     Sphere,
43     Box,
44     Cylinder,
45     Cone,
46     Ellipsoid,
47     Triangle
48 }
49 
50 abstract class Geometry
51 {
52     GeomType type = GeomType.Undefined;
53 
54     this()
55     {
56     }
57     
58     Vector3f supportPoint(Vector3f dir)
59     {
60         return Vector3f(0.0f, 0.0f, 0.0f);
61     }
62 
63     Matrix3x3f inertiaTensor(float mass)
64     {
65         return Matrix3x3f.identity * mass;
66     }
67 
68     AABB boundingBox(Vector3f position)
69     {
70         return AABB(position, Vector3f(1.0f, 1.0f, 1.0f));
71     }
72 }
73 
74 class GeomSphere: Geometry
75 {
76     float radius;
77     
78     this(float r)
79     {
80         super();
81         type = GeomType.Sphere;
82         radius = r;
83     }
84 
85     override Vector3f supportPoint(Vector3f dir)
86     {
87         return dir.normalized * radius;
88     }
89 
90     override Matrix3x3f inertiaTensor(float mass)
91     {
92         float v = 0.4f * mass * radius * radius;
93 
94         return matrixf(
95             v, 0, 0,
96             0, v, 0,
97             0, 0, v
98         );
99     }
100 
101     override AABB boundingBox(Vector3f position)
102     {
103         return AABB(position, Vector3f(radius, radius, radius));
104     }
105 }
106 
107 class GeomBox: Geometry
108 {
109     Vector3f halfSize;
110     float bsphereRadius;
111 
112     this(Vector3f hsize)
113     {
114         super();
115         type = GeomType.Box;
116         halfSize = hsize;
117         bsphereRadius = halfSize.length;
118     }
119 
120     override Vector3f supportPoint(Vector3f dir)
121     {
122         Vector3f result;
123         result.x = sign(dir.x) * halfSize.x;
124         result.y = sign(dir.y) * halfSize.y;
125         result.z = sign(dir.z) * halfSize.z;
126         return result;
127     }
128 
129     override Matrix3x3f inertiaTensor(float mass)
130     {
131         float x2 = halfSize.x * halfSize.x;
132         float y2 = halfSize.y * halfSize.y;
133         float z2 = halfSize.z * halfSize.z;
134 
135         return matrixf(
136             (y2 + z2)/3 * mass, 0, 0,
137             0, (x2 + z2)/3 * mass, 0,
138             0, 0, (x2 + y2)/3 * mass
139         );
140     }
141 
142     override AABB boundingBox(Vector3f position)
143     {
144         return AABB(position, 
145             Vector3f(bsphereRadius, bsphereRadius, bsphereRadius));
146     }
147 }
148 
149 class GeomCylinder: Geometry
150 {
151     float height;
152     float radius;
153     
154     this(float h, float r)
155     {
156         super();
157         type = GeomType.Cylinder;
158         height = h;
159         radius = r;
160     }
161 
162     override Vector3f supportPoint(Vector3f dir)
163     {
164         Vector3f result;
165         float sigma = sqrt((dir.x * dir.x + dir.z * dir.z));
166 
167         if (sigma > 0.0f)
168         {
169             result.x = dir.x / sigma * radius;
170             result.y = sign(dir.y) * height * 0.5f;
171             result.z = dir.z / sigma * radius;
172         }
173         else
174         {
175             result.x = 0.0f;
176             result.y = sign(dir.y) * height * 0.5f;
177             result.z = 0.0f;
178         }
179         
180         return result;
181     }
182     
183     override Matrix3x3f inertiaTensor(float mass)
184     {
185         float r2 = radius * radius;
186         float h2 = height * height;
187 
188         return matrixf(
189             (3*r2 + h2)/12 * mass, 0, 0,
190             0, (3*r2 + h2)/12 * mass, 0,
191             0, 0, r2/2 * mass
192         );
193     }
194 
195     override AABB boundingBox(Vector3f position)
196     {
197         float rsum = radius + radius;
198         float d = sqrt(rsum * rsum + height * height) * 0.5f;
199         return AABB(position, Vector3f(d, d, d));
200     }
201 }
202 
203 class GeomCone: Geometry
204 {
205     float radius;
206     float height;
207 
208     this(float h, float r)
209     {
210         super();
211         type = GeomType.Cone;
212         height = h;
213         radius = r;
214     }
215 
216     override Vector3f supportPoint(Vector3f dir)
217     {
218         float zdist = dir[0] * dir[0] + dir[1] * dir[1];
219         float len = zdist + dir[2] * dir[2];
220         zdist = sqrt(zdist);
221         len = sqrt(len);
222         float half_h = height * 0.5;
223         float radius = radius;
224 
225         float sin_a = radius / sqrt(radius * radius + 4.0f * half_h * half_h);
226 
227         if (dir[2] > len * sin_a)
228             return Vector3f(0.0f, 0.0f, half_h);
229         else if (zdist > 0.0f)
230         {
231             float rad = radius / zdist;
232             return Vector3f(rad * dir[0], rad * dir[1], -half_h);
233         }
234         else
235             return Vector3f(0.0f, 0.0f, -half_h);
236     }
237 
238     override Matrix3x3f inertiaTensor(float mass)
239     {
240         float r2 = radius * radius;
241         float h2 = height * height;
242 
243         return matrixf(
244             (3.0f/80.0f*h2 + 3.0f/20.0f*r2) * mass, 0, 0,
245             0, (3.0f/80.0f*h2 + 3.0f/20.0f*r2) * mass, 0,
246             0, 0, (3.0f/10.0f*r2) * mass
247         );
248     }
249 
250     override AABB boundingBox(Vector3f position)
251     {
252         float rsum = radius + radius;
253         float d = sqrt(rsum * rsum + height * height) * 0.5f;
254         return AABB(position, Vector3f(d, d, d));
255     }
256 }
257 
258 class GeomEllipsoid: Geometry
259 {
260     Vector3f radii;
261 
262     this(Vector3f r)
263     {
264         super();
265         type = GeomType.Ellipsoid;
266         radii = r;
267     }
268 
269     override Vector3f supportPoint(Vector3f dir)
270     {
271         return dir.normalized * radii;
272     }
273     
274     override Matrix3x3f inertiaTensor(float mass)
275     {
276         float x2 = radii.x * radii.x;
277         float y2 = radii.y * radii.y;
278         float z2 = radii.z * radii.z;
279 
280         return matrixf(
281             (y2 + z2)/5 * mass, 0, 0,
282             0, (x2 + z2)/5 * mass, 0,
283             0, 0, (x2 + y2)/5 * mass
284         );
285     }
286 
287     override AABB boundingBox(Vector3f position)
288     {
289         return AABB(position, radii);
290     }
291 }
292 
293 class GeomTriangle: Geometry
294 {
295     Vector3f[3] v;
296     
297     this(Vector3f a, Vector3f b, Vector3f c)
298     {
299         super();
300         type = GeomType.Triangle;
301         v[0] = a;
302         v[1] = b;
303         v[2] = c;
304     }
305 
306     override Vector3f supportPoint(Vector3f dir)
307     {
308         float dota = dir.dot(v[0]);
309         float dotb = dir.dot(v[1]);
310         float dotc = dir.dot(v[2]);
311     
312         if (dota > dotb)
313         {
314             if (dotc > dota)
315                 return v[2];
316             else
317                 return v[0];
318         }
319         else
320         {
321             if (dotc > dotb)
322                 return v[2];
323             else
324                 return v[1];
325         }
326     }
327 
328     // TODO: boundingBox
329 }
330